

Year 12 Methods Units 3,4 Test 3 2020

Section 1 Calculator Free Discrete Random Variables

STUDENT'S NAME

SOLUTIONS

DATE: Thursday 14th May

TIME: 15 minutes

MARKS: 18

KRISZYKT

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (7 marks)

(a) Determine if each of the following are probability functions, justify your answer either way.

- (b) An experiment is conducted where a ball is randomly picked from a bag containing red and green balls. What condition(s) must be placed on the experiment for it to be considered a Bernoulli experiment? [2]
 - Sucess/Fail criteria must be defined.
 one trial

2. (11 marks)

The discrete random variable *X* has a cumulative probability distribution given by:

P(X)	$\frac{x}{K \le x}$	-1 0.2	$0 \\ 0.2 + a$	$\frac{1}{0.3+a}$	$\begin{array}{c} 2\\ 0.3+2a \end{array}$	$\frac{3}{0.5+2a}$	
		x -	0.45	0.55	2 3		
	PC	$\chi = \chi$ 0.	.2 0.25	0.1	0.25 0.2	1	
(a)	Determ	iine <i>a</i> using the 2a r	distribution at $0.5 = 1$	oove.	(13)	if a = -1	
(b)	Calcula	ate:	a = 0	25		pi	
	(i)	P(X < 2)	0.55			[1]	
	(ii)	$P(X > -1 \mid X \le$	≤2) 0.6 0.8	= 0.7	r j	f f f f f f f f f f	3
(b)	Determ	nine E(X)				[2]	
		E(X) = (X) + (Y)	$(1 \times 0.2) + (3 \times 0.2)$	(0x0.25)	+(1x0.1)) + (2 × 0.25)	6
(c)	If $E(X$	= = $(-2^{2}) = \frac{31}{10}$, deter	-0.2 + 0 1 rmine Var (X).	.1 +0.5 + N	0.6 77 if 60	if used cumulative	3
		Var(X)	$= \frac{31}{10} - \frac{31}{21}$. (j)2	$a = -\frac{1}{12}a$	rd cumulative)	
The ra	andom va	ariable $Y = 6 - $	10 2 <i>X</i>				
(d)	(i)	Determine E()	r) E(Y	') = 6 - 2 = 4	2(i)	[1]	
	(ii)	Determine Var	(Y) Var	(Y) = E	$(2)^{2} \times \frac{21}{10}$	[1]	
				-	84	Page 2 of 2	

Year 12 Methods Units 3,4 Test 3 2020

Section 2 Calculator Assumed Discrete Random Variables

STUDENT'S NAME

SOLUTIONS

DATE: Thursday 14th May

TIME: 35 minutes

MARKS: 38

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

4. (3 marks)

This graph represents a binomial probability distribution.

The height of the last column is 0.053

(a) State the value of n.

n = 4

(b) State the probability of success for this binomial distribution, correct to 2 decimal places. [2]

 $4C_{4} \times p^{4} \times (1-p)^{\circ} = 0.053$ p = 0.4798p = 0.48 [1]

5. (8 marks)

In Australia, approximately 9% of people have the blood type O-negative. On any given day the Red Cross needs to collect blood from at least 2 donors with O-negative blood.

On Wednesday they collect blood from 20 donors of various blood types, let the random variable X be the number of donors with O-negative blood.

(a) State the probability distribution for X.

```
X \sim B(20, 0.09)
```

(b) Calculate the probability that the target of at least 2 donors with O-negative blood will be met. [2]

 $P(X \ge 2) = 0.5484$

- (c) Given that at least 15 donors without O-negative blood have been found from the 20, what is the probability that there will be exactly 4 donors with O-negative blood? [3]
 - $P(X=4 | X \le 5) = \frac{0.0702952}{0.9932105}$ = 0.0708
- (d) How many donors would be needed to give at least a 99% chance that at least 1 donor with blood type O-negative is found? [2]

$$P(X \ge 1) \ge 0.99$$

=> $P(X \le 1) \le 0.01$
=> $P(X = 0) \le 0.01$
 $n = 49$

[1]

6. (4 marks)

A school has analysed the examination scores for all its Year 12 students taking Methods as a subject. Let X: the examination percentage scores of all the Methods Year 12 students at the school. The school found that the mean was 75 with a standard deviation of 22.

The school has decided to scale the results using the transformation Y = aX + b where *a* and *b* are constants and *Y*: the scaled percentage scores. The aim is to change the mean to 60 and the standard deviation to 15.

Determine the values of a and b.

15 = 22a 60 = 75a + b $a = \frac{15}{22} b = \frac{195}{22} b$ $a \approx 0.682 b \approx 8.864$

7. (8 marks)

Amal noticed that in Methods, which he attends four days a week, the chance of being set homework on any one day was 70% and independent of the previous day.

(a) Determine the probability that Amal is set homework in this class;

(i) the next time he attends but not the lesson after
$$0.7 \times 0.3 = 0.21$$

(ii) exactly twice in the next week

$$X - B(4, 0.7) = 0.2646$$

(b) Determine the probability that over a ten-week term, Amal will be given homework twice a week in Methods, at least 7 times. [2]

$$Y \sim B(10, 0.2646)$$
 /
 $P(Y \gg 7) = 0.005$ /

Z: Amal gets homework in 6 tessons $Z \sim B(6, 0.7) P(Z=3) = 0.1852$

:
$$P(Fourth homework on 7th) = 0.1852 \times 0.7$$

= 0.1296 Page 3 of 6

[1]

[2]

Allow

(5 marks) 8.

A discrete random variable X has the following probability distribution:

x	0	1	2	3
P(X = x)	0.064	0.288	У	Z

Note: for all other x, P(X = x) = 0

(a) Determine the value of y in terms of z.

y = 0.648 - 2

(b) Given X is a binomial random variable, determine the values of y and z.

$$X \sim B(3, P)$$

 $P(X = 0) = 3_{c_0} P^{\circ}(1-P)^3$
 $0.064 = (1-P)^3$
 $P = 0.6$

$$P(X=2) = 3C_{2}(0.6)^{2}(0.4)$$

= 0.432
$$Y = 0.432$$

... Z = 0.216

[4]

[1]

9. (10 marks)

For Edmund Rice Day, one PCG will have a game involving rolling two regular six-sided dice. The **difference** in the values on the two dice will be the score. The game will cost \$2 for an attempt with a payout back to the customer of \$8 if the score is 5, a payout of \$5 if the score is 2 and they get their money back if the score is 4. All other scores do not win a prize

(a) Indicate the possible outcomes for one attempt of rolling two dice.

	1	2	3	4	5	6	
1	0	1	2	3	4	5	
2	I	0	I	2	3	4	
3	2	1	0	1	2	3	
4	3	2	۱	Û	i -	2	
5	4	3	2	1	0	1	
6	5	4	3	2	1	0	

Let X be the **profit** made by the PCG on one attempt.

Complete	the table below				[2]	
	Lose	\$5 win	\$8 win	MB		
x	2	- 3	-6	0	V	
P(X = x)	22/36	8/36	2/36	4/36	V	

The PCG is anticipating that there will be 600 attempts of the game on the day.

(c) How much total profit is the PCG expecting?

$$E(X) = \frac{2}{9} \checkmark$$

Expected profit =
$$600 \times \frac{2}{9}$$

= \$133.33 v

[2]

[2]

 $\sqrt{}$

The PCG decide this is not enough profit and decides to increase the cost of one attempt so that the expected profit on the 600 rolls would be at least \$400.

(d) Noting that all transactions are made with cash, what is the **minimum** charge to **ensure** expected profit is at least \$400? [4]

$$\frac{105e}{P(X=X)} = \frac{55}{22/36} = \frac{55}{136} = \frac{58}{2} = \frac{58}{2$$

1

$$E(X) = \frac{22c}{36} + \frac{8(c-5)}{36} + \frac{2(c-8)}{36} + 0$$

= $\frac{32c-56}{36}$

Expected total profit =

$$400 = 600 \times \frac{32c - 56}{36}$$
$$c = $2.50 \checkmark$$

i.e Charge \$2.50 or more.

//